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1. INTRODUCTION

Recently R. F. Link (1981) used finite difference operators for a
unified approach to détermining the moments of discrete probability dis-
tributions.

He presented derivations for several well-known distributions: the
binomial, Poisson, geometric, and hypergeometric. Following his approach
we give derivations for several important distributions in occupancy prob-
lems and some other well-known discrete distributions (negative binomial,
power series, and factorial series). Also, Johnson and Kotz (1981) gave
the formulae of (descending or ascepding) factorial moments for the biﬁomial,
Poisson, hypergeometric, negative binomial, and negative hypergeometric.

If the moments about the origin are expréssed by means of finite dif-
ference operators, the corresponding descending factorial moments can be
found immediately by a theorem given below.

In this article, E is the displacement operator and A is the dif-
ference operator; i.e.

Ef(x) = f(x+1) and Af(x) = f(x+l) -f(x).

o -
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The relationship between E and A is:
A= (E-1) ; 'E =(I+p).
If X is a discrete random variable and
Pj‘= P(X=3) i=0,1,2, ...

th .
Its s~ moment about the or1g1n,tu‘s, is

(2]

LI .S
Ys T im0 P51
and its sth descending factorial moments u(s) is
(s) ® . (s) ® . (s)
= I, , = I, .
u j=0 Pj 3 j=s Py d
where j(s) =3 (3-1) ... (G-stl).

In what follows,(i) = 0, for a<b or b<0 , and Angm = A'X -0"

2. THE CLASSICAL OCCUPANCY PROBLEMS

The basic models of the classical occupancy problems are as follows:
there are m urns and n balls, and the balls are distributed among the m
urns. Let ME be the number of urns containing exactly t %alls (t=0, 1,
+e»y N). Find the distributions of Mt (cf. Johnson and Kotz, 1977).

According to whether the urns and balls are distinguishable (DT) or
indistinguishable (IDT), and whether empty urns are permitted or not, there
are several possible models, four of which are listed/in Table 1, where
Tfi} (n,m) denotes the number of ways in which n balls are distributed

among m urns under the model {i} (cf. Johnson and Kotz, 1977, p.37).



Table 1. The Classical Occupancy Models

Model Urns Balls Are empty urns permitted T{i} (n, m)

{1} DT IDT Yes - \n +m ‘1)
m -1

{2} DT IDT No ( n ‘l)
: m -1

{3} DT DT Yes ' m"
{4} DT DT No A" o™
The models {1} and {2} correspond to the Bose - Einstein system and

the models {3} and {4} correspond to Maxwell - Boltzmann system. Let Mt{l}

be Mt under the model {i} (i=1, 2, 3, 4). TIt is well-known that the distrib-

{i} are:

utions of Mt

(3) = j [ m-r\/ntm-(r+i) (e+1) -1
P{Mt{l} =r} B n-H]I:I—l E-O ('_1)3 (mjr)(n mfrij—i )
( m-1 )
{2} (m) (r+j)
r m-r . jm-ri;n-(r+j)t-1
P{M =r}= —— 35 (-1)4 ) S
t r ( Z:i) =0 ( q ( m—r—J—l )
{3} (m) m-r . /m-T ' .
{ =r} = L1 (—l)J ( . ) _n. (- _.)n—(r+j)t
T ’ m" jio 3/ ()™ (a-(e+i)0) ! e
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We can express these in a unified form:

{1} (f) m-t
P{M =r}= —mm—— 1
t Tryy(mm 4o
where
hl(n,t,a) = hé(n,t,u) =1

h3(n,t,a) = h4(n,t,a) =

Let u{£1

using finite difference operators.

M

and we c¢
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for i=1,2,3,4,

< be the sth moment of Mt about the orgin. We can derive u{i}s by

Thus we get

Tes

From the definition of moments, we have

m {i} m .
= 3 r° pM =y =z piit = £y BT 0°
s oo t e t ~
{i}
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j 'm§ i
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m . s
1 \j) T{i} (n-jt, m-3) hi (n’t,j) AJ‘ 9 s - for 'i=]_.. 2, 3, 4,
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3. THE RESTRICTED OCCUPANCY PROBLEMS

In the models above, if the maximum number of balls allowed in any urn is
k, we get the restricted occupancy problems. The models are as follows:

There are m urns and n balls. Each urn contains k cells. The n balls are
assigned among the m urns so that eéch cell contains at most one ball.

Fang (1982) considers»sevéral models according to whether urns, balls and
cells are DT or IDT, and whethgr empty urns are permitted or not. Ten such models
are listed in Table 2.

Fang (1982) obtained the distributions of Mt under the model (i), i=l, 2,

ooy 10. They have the following unified form except for model (9):
;o v
(r} m-r i m-r
P{Mt=r]- = m jio \"l) { j )Ti (n"(r',’:])t, m"(r+J)’ k) gi(n,k,t,r+_])

where Ti(n,m,k) is the number of ways of distributing n balls among m urns

under the model (i) and

1 for i=1, 2,
(ﬁ)“ for i =3, 4,
g{(n,k,t,u) = (E)a n (at) for i =5, 6,
n. for 1i =17, 8,
(£") “(n-ot)!
n! for i = 10.

0 (£1)%(n=at) !



Table 2. Models of the Restricted Occupancy Problems

izgzoir;fp22£22ted izzzoir:fnsﬁp;Zrmitted urns balls cells
(1) ’ (2) DT IDT | IDT
(3) (4) DT IDT DT
(&) (6) DT DT - DT
7 (8) DT ~ DT IDT
(9) (10) IDT DT IDT

We see that the distributions of Mt have a form which is similar to that

of the classical models. Thus

s m .
(3.1) U‘(]:.) - Z (j) Ti (n-jt’ m_j’k) gi(n’k’tQj)Aaos/Ti(n’m’k) i=l,‘2,--o,8-10’9
s j=1 :

S

where uii) = E (Mt) under the model (i).
's

4. COMMITTEE PROBLEMS

A group contains n individuals, any LA of whom can be selected at
random to form the iFh committee (i=1, 2, ..., r). Find the probability
that exactly m individuals will be committee members. This has been
called the committee problem which has been studies by several authors
(cf. Johnson and Kotz, (1977), and Holst  (1980)).

Let L be the number of individuals who do not serve on any of the

r committees; then exactly (n-L) individuals will be committee members.



We can find the distribution of L by using the finite difference operator
(White, 1971) or by the inclusion-exclusion principle (Sprott, 1969). It

is
n-k

. . r m-k-j 3
P{L=k} = £ (-1)J (kﬂ){ n ) I ( J) /(n
i=0 k/\k+j) i=1 \ Y3 vy

th ..
Its s moment uS is

=1 j=0 ket i= W, w,
il
n n ayny, T
- r (-1)otk (k){u)( I ( n—a)/{n X\ gk oS
=1 o=k * i=1 \w {wi;/ ~
n . a o
- ()1 (L)) 2 e (k) gl
a=1 0‘) i=1 \ Y3 (Wi3 k=1 ~
s
- 3 m(PT%Y /(R 4%
a=1 ( V:'L=l < Vi ) ‘ \Wl)5 ¥
In particular, if w. = W, = =W w, we have
4o - ; ny, n-oy" A% oS /(P u
OISR o W G

5. OTHER DISTRIBUTIONS

(1) Negative Binomial Distribution
The formula for the moments of the negative binomial distribution
as obtained by Link (1981) contains double summations, and Link suggests

that a way should be found to get rid of these .



We can express the negative binomial distribution as

k+i-1\ i k )
p. = ( I )qup j=0, 1, 2,
J k-1

(Patel, Kapadia and Owen, 1976, p.22). Now

- ) k+j-1
G0 g ()

=0 quk EJOS

S

: =k

< (- ™ o
k -k

P (p-qd) >
-k

(1 - q/pm)"° 0°

s e . .
- Qk&j—l](q/p)JAJOS.
=0 k-1 =

O

(2) Power Series Distribution

Here pj = ajGJ !/ £(9) j=0, 1, 2, ...

Where f(9) = Z,w a,ej
(0) j=0 i .

The class of power series distributions includes the Poisson, binomial,

negative binomial distributions. From the definition, we have

(5.2) = % a,098l0%/ £(0)
s -1 3 ~

J

. .
=3 ae I (J>A1 0° / £(0).
= 0

=1 3 i=0\i
s P13\ i s
=3 3 4.9 (!) A* 0% 7 £(0)
i=1 j =1 J 1 ~
s i . .
=_zl-—%T £ D 41 05 £ee)
l=



where f(l) (8) denotes the ith derivative.

(3) Factorial Series Distributions

o o 8 M
S HEE O N
where £ (8) = % 37 A® £(0) and £(0) satisfies suitable conditions
=0 3 A

(cf. Johnson and Kotz, 1977, pp.87-88). We have

NG I .
(5.3) £(0) u* = 3 —=—pd £ (0) B 0°
s . it ~ ~
j=0
© (1) . j . .
- 3 =L P : (3) a* 0®
j=0 3° =g ‘i
s o i s

oz o) I £(0) AT.-Q—
i=1 j=i (3-1)° :

s ® (o+i) . i s
=3 1 S Mg bl
i=1l 0=0 : )
S i ° (- o stos
= I © A z R A A f(g) i
i=1 a=0 * ‘
s . . i s
= 3 oD, £(o-i) 2 9
. 1.
i=1

6. DESCENDING FACTORIAL MOMENTS

The formulas which have been found: by Link, Johnson and Kotz, and

by us can all be written in the following form:



It is well known (cf. Johnson and Kotz, 1977, pp. 8-10) that:

s ° () 3 8
(6.1) X = I, X AC 07/ 5!t
J=l = s
thus there is a relationship between u; and u’(s) which is
SO G DI -
(6.2) o= I qu A 07 ) 5!
s j=1 ~

Let A = (aij) be a s X s matrix, where
Jai .o s
a,. ={VA 9 /51 for 1 > j
J 0 for i < j.
Obviously, A is a lower triangular matrix with a;; = 1 (i=1,2,...,8). Hence
A is non-degenerate. From this fact, we obtain the following theorem.

Theorem If the moments about the origin have the form

s .
- S
uS = I 2 AJ 9 s = 19 2,

then the corresponding descending factorial moments are

u(s) = a s! s=1, 2, ...

By using the theorem and formulas obtained by Link, Johnson and Kotz, and
us, we immediately derive the descending factorial moments of the follow-
ing distributions. These moments can be found in textbooks or papers, but

the derivations are often elaborate or lengthy.

(1) Binomial Distribution
s
W8 _ () p°.

(2) Poisson Distribution

u(S) = ¢S

(3) Geometric Distrbution

-1
u(s) = s! q "/ p°,
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(4) Hypergeometric Distribution

u(S)==n(3) X(S) / N(S),

(5) Negative Binomial Distribution

[s]

1 = (ere-n) (9 (a/p)° = k (a/p)®,

[s]

where k =k (k+l) ... (k+s-1)

(6) Power Series Distributions

u(® =65 £(3) () / £coy

(7) TFactorial Series Distributions

u(s) = p(8) a8 ¢ (6-s) / £(8) .

(8) The Classical Occupancy Problems
u(S) O
{i}

(9) The Restricted Occupancy Problems
u(.s) - m..(.S)
(1)

Fang (1981) obtained the same results by using characteristic functions.

(10) Committee Problems

u(.s) - n(.s) ﬁ (n—g)/ (n.\
1=1 | w, Vil
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